Strict Control Lyapunov Functions for Homogeneous Jurdjevic-Quinn Type Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-Field Sparse Jurdjevic–Quinn Control

We consider nonlinear transport equations with non-local velocity, describing the time-evolution of a measure, which in practice may represent the density of a crowd. Such equations often appear by taking the mean-field limit of finite-dimensional systems modelling collective dynamics. We first give a sense to dissipativity of these mean-field equations in terms of Lie derivatives of a Lyapunov...

متن کامل

Sparse Jurdjevic-Quinn stabilization of dissipative systems

For control-affine systems with a proper Lyapunov function, the classical Jurdjevic–Quinn procedure (see [22]) gives a well-known and widely used method for the design of feedback controls that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general required to be activated, i.e. nonzero, at the same time. In this paper we give sufficient condit...

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

A Stochastic Jurdjevic--Quinn Theorem

The purpose of this paper is to extend to a ne in the control stochastic di erential systems the well{known result of Jurdjevic{Quinn [2]. This result incorporates a previous result in the stochastic context proved in [1].

متن کامل

Jurdjevic-Quinn Conditions and Discontinuous Bounded Damping Control

RÉSUMÉ. Sous les hypothèses requises, on étudie une version discontinue des lois de contrôle dites “amortissantes” ou encore “de Jurdjevic-Quinn”. On présente un résultat de stabilisation pratique lorsque la borne sur les contrôles est suffisamment petite. La motivation est d’estimer sa croissance du temps qu’il faut pour atteindre un voisinage donné de la cible quand la susdites borne tend ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 1998

ISSN: 1474-6670

DOI: 10.1016/s1474-6670(17)40437-x